Composites data transfer between CATIA and Abaqus
Simulations in Aerospace and Defense companies have a well-defined workflow. They have two separate teams for composites products: one for design and other for simulation. Composites ply design is primarily done by design engineers. These are the folks that determine the composites material as well as ply thicknesses and stackings in different regions of the composites part. CATIA composites design and manufacturing workbench has all sorts of tools to help designers achieve their objectives. We have discussed these workbenches in past.
However, because of FAA and other regulations in place, design has to be validated with FEA simulation and for most of the non linear workflows, Abaqus is the right solver choice. Though CATIA does provide an environment for Abaqus pre-processing, the preferred method in Aerospace industry is to use Abaqus CAE user interface. This is because of two reasons. First reason is better meshing capabilities offered by Abaqus CAE and second is tight coupling of Abaqus CAE with underlying solver. The obvious questions that arises is “how to move the ply information from CATIA to Abaqus CAE.”
The answer is composites link in collaboration with composites modeler for Abaqus CAE. The composites link exports the ply data from CATIA in form of layup file. Based on workflow, three options are possible.
- Export only the ply data: When mesh is already in Abaqus CAE environment.
- Export ply data with CATIA mesh: When meshing has been done in CATIA Analysis environment.
- Export ply with external mesh file: When Abaqus input file needs to be merged with ply data.
There are further options to export data either with or without taking change in orientations due to wrinkling into account as done by composites fiber modeler. Once the mesh and layup comes in Abaqus CAE environment, it is possible to explode the shell data based on ply thickness and create solid elements from shells. Abaqus CAE automatically creates section properties and assignments based on modified ply orientations. It is further possible to visualize ply orientations on each ply as well as ply stack plots on element by element bases. Once the data transfer and visualization is complete, the entire advanced analysis set up such as bird strike, fracture or delamination can be defined in Abaqus for analysis.